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1 IntrodutionSparse matries lie in the hearts of many omputation-intensive appliations suh as �nite-element simulations, deision support systems in management siene, power systems analysis,iruit simulations, and information retrieval. The performane of these appliations diretlyrelies on the performane of the sparse matrix kernels. However, the performane of sparsematrix operations on modern proessors is limited due to the high ompute-to-memory ratio,and irregular memory-aess patterns.Conventional data strutures for sparse matries have two omponents: an array that storesoating-point entries of the matrix, and arrays that store the nonzero struture (i.e., pointersto the loations of the numerial entries). Exploiting sparsity invariably requires using pointers,but pointers often lead to poor performane. One reason for the poor memory performane isthat pointers ause an irregular memory aess pattern and thus poor spatial loality. Anotherimportant reason, whih is often overlooked, is the extra load operations. Eah operation on anonzero entry requires loading the loation of that nonzero before loading the atual oatingpoint number. For instane, sparse matrix vetor multipliation, whih is one of the mostimportant kernels in numerial algorithms, requires three load operations for eah nonzero inthe matrix. It has been observed that this overhead might be as ostly as the oating pointoperations [5℄.Reent studies have investigated improving memory performane of sparse matrix operationsby reduing the number of extra load operations [5, 8, 9℄. In [8℄, P�nar and Heath proposedexploiting dense bloks of a sparse matrix, along with reordering tehniques to inrease the sizesof these bloks. One approah onsidered is splitting a matrix as A = A12 + A11, where A12inludes 1 � 2 bloks of the matrix (two nonzeros in onseutive positions on the same row),and A11 overs the remaining nonzeros. Notie that it is suÆient to store a pointer for eahblok in A12. Signi�ant speedups in large experimental sets have been observed, whih givesmotivation to searh for larger bloks in the matrix for further improvements in performane.One an split the matrix into A = Ad+As, where Ad ontains all dense bloks, and As ontainsthe remaining entries. Clearly, for a onstant blok size, having more entries in Ad yields fewerload operations, thus better memory performane. This alls for eÆient algorithms to �nd amaximum number of nonoverlapping bloks of a spei�ed size in a sparse matrix. A greedyalgorithm is suÆient to �nd a maximum number of nonoverlapping m� n bloks when m = 1or n = 1. However, this problem is muh harder when m;n � 2.In this work, we study the problem of �nding a maximum number of nonoverlapping m� ndense bloks of a sparse matrix, whih we all the maximum nonoverlapping dense bloks prob-lem. In the next setion, we de�ne the problem formally and investigate its relation to themaximum independent set problem. We de�ne a lass of graphs where the independent setproblem is equivalent to the maximum nonoverlapping dense bloks problem. In Setion 3,we use this relation to prove that the maximum nonoverlapping dense blok problem is NP-omplete. Our proof uses a redution from the maximum independent set problem on ubiplanar graphs and adopts orthogonal drawings of planar graphs. Setion 4 presents an approxi-mation algorithm for the problem. Sine we are motivated by improving memory performane ofsparse matrix operations, we are interested in fast and e�etive heuristis for the preproessingost to be amortized over the speedups in subsequent sparse matrix operations. Our algorithmsrequire only linear time and spae, and generate solutions whose sizes are within 2=3 of the1



optimal.In this extended abstrat, we only fous on �nding 2� 2 bloks due to spae onsiderationsand larity of presentation. However, our results an be generalized as we disuss in Setion 5.We prove that the problem is NP-omplete for m � n bloks for m;n � 2. We also work onalternative dense patterns to replae retangular bloks, whih might be employed to speedupsparse matrix operations.The problem of �nding nonoverlapping dense bloks of a sparse matrix has not been studiedin the sparse-matrix ommunity. We have been reently aware of the work by Berman et al. [2℄,where a similar problem is disussed as the optimal tile salvage problem. In the optimal tilesalvage problem, we are given an pN �pN region of the plane tiled with unit squares, some ofwhih have been removed. The task is to �nd a maximum number of funtional nonoverlappingm�n tiled retangles. The di�erene between our problem and the optimal tile salvage problemis that in the tile salvage problem the tiles are allowed to be in any orientation (m�n or n�m),whereas in our ase the orientation is �xed (only m � n). The two problems oinide in thease of square dense bloks. Berman et al. proved the NP-ompleteness of the tile salvageproblem, however their proof exploits the exibility in the orientation of the dense blok, andthus our proof is signi�antly di�erent. Berman et al. also desribe an (1 � �)-approximationalgorithm, whih would work for square bloks, for � = O(1=pÆ logM), where M is the optimalsolution value. Their algorithm is based on maximum planarH-mathing whih runs in O(N1+Æ)steps for small Æ > 0. Baker [1℄ also has an algorithm for the ase of square bloks, whihruns in O(8kN)-time and O(4kN) spae and produes a (k � 1)=k-approximation. Both ofthese algorithms however are omplex and hard to implement. The greedy 2=3-approximationalgorithms we propose are very simple. It requires linear time and spae, with very smallonstant fators in the time and spae bounds. Our algorithm requires only one pass throughthe matrix, and thus is I/O -eÆient.2 PreliminariesIn this setion we de�ne the problems formally, and present de�nitions and some preliminaryresults that will be used in the following setions.2.1 Problem De�nitionThis work investigates the problem of �nding a maximum number of nonoverlapping matrixsubstrutures of presribed form and orientation.De�nition 2.1 An m� n pattern is a 0-1 m � n matrix �. An oriented �-substruture of amatrix A is an m � n submatrix M in A so that M(i; j) 6= 0 if sigma(i; j) = 1 for 1 � i � m,and 1 � j � n. Two substrutures M and N overlap if they share nonzero entry e in M withoordinates (iM ; jM) in M and (iN ; jN) in N and �(iM ; jM) = �(iN ; jN) = 1.Given a partiular pattern �, we de�ne the maximum nonoverlapping �-substrutures (MNS)problem as follows.De�nition 2.2 Maximum Nonoverlapping �-Substrutures (MNS) ProblemINSTANCE: An M �N matrix A, integer K.QUESTION: Does A ontain K disjoint �-substrutures?2



In this paper, we fous on dense bloks, due to their simpliity, and their e�etiveness in speedingup sparse matrix operations. A dense blok of a matrix is a submatrix of spei�ed size all ofwhose entries are nonzero, i.e., it is a �-substruture where � is the all 1s matrix. We identify adense blok with its upper left orner. Two bloks overlap if they share a matrix entry. Formalde�nitions follow.De�nition 2.3 Given an M �N matrix A = (aij), we say bij is an m� n dense blok in A i�akl 6= 0 for all k and l suh that i � k < i+m �M and j � l < j + n � N . Two m� n bloksbij and bkl overlap i� i � k < i+m and j � l < j + n, or k � i < k +m and l � j < l+ n.We speify the MNS problem for dense bloks as follows.De�nition 2.4 Maximum Nonoverlapping Dense Bloks (MNDB) ProblemINSTANCE: An M � N matrix A, positive integers m and n that de�ne the blok size, and apositive integer K.QUESTION: Does A ontain K disjoint m� n dense bloks?In this paper, we will fous on 2� 2 bloks for spae onsiderations, and larity of presentation,although our results an be generalized to varying blok sizes, and di�erent substrutures.2.2 Intersetion GraphsIt is easy to �nd all spei�ed patterns in a matrix, however what we need is a subset withnonoverlapping bloks. In this sense, the MNS problem is related to the maximum independentset (MIS) problem, whih is de�ned as �nding a maximum ardinality subset of verties I of agraph G, suh that no two verties in I are adjaent. Below we de�ne an intersetion graph,whih reveals the relation between the independent set and the nonoverlapping bloks problemsmore learly.De�nition 2.5 A graph G is an intersetion graph of the �-substrutures of a matrix A if thereis a bijetion � between the verties of G and the substrutures of A, suh that there is an edgein G between �(s1) and �(s2) if and only if s1 and s2 overlap in A.We will use G(A;m; n) to refer to the intersetion graph of dense m�n bloks in matrix A.A maximum independent set on G(A;m; n) gives a maximum number of nonoverlapping bloksin A, thus the MNDB problem an be redued to the maximum independent set problem, whihis known to be NP-omplete [4℄. However it is important to note that the blok intersetiongraphs have speial strutures, whih an be exploited for eÆient solutions. For instane, agreedy algorithm is suÆient to �nd a maximum number of nonoverlapping 1 � n and m � 1bloks, sine these problems redue to a family of disjoint maximum independent set problemson interval graphs. In the remainder of this setion, we de�ne the lass of graphs that onstituteblok intersetion graphs. An intersetion graph of a set of 2 � 2 dense bloks is an induedsubgraph of the so alled X-grid whih onsists of the usual 2 dimensional grid, and diagonalsfor eah grid square. In general, the intersetion graph of a set of m � n dense bloks is anindued subgraph of the Xmn grid. Below, we �rst de�ne an Xmn grid, and then restrit thede�nition to de�ne the graph lass X�mn that represent graphs that an be an intersetiongraph for a matrix. 3



De�nition 2.6 An M �N Xmn grid is a graph with a vertex set V and an edge set E, so that� V = fvij : 1 � i �M �m; 1 � j � N � ng� E = f(vij; vkl) : 1 � i; k �M �m; 1 � j; l � N � n : ji� kj < m; jj � lj < ngIn an Xmn grid, vertex vij orresponds to the blok bij in the matrix, and edges orrespond toall possible overlaps between bloks. Note that not all indued subgraphs of the Xmn grid areintersetion graphs of a matrix. We de�ne a graph lass X�mn in whih eah graph orrespondsto an intersetion graph G(A;m; n) of the set of m � n dense bloks of a matrix A, and eahsuh intersetion graph is in the lass.De�nition 2.7 A graph G = (V;E) is in the graph lass X�mn if and only if it is an induedsubgraph of an Xmn grid and has the losure property so that vij 2 V if8i � k < i+m; j � l < j + n; 9vst : s � k < s+m and t � l < t+ nThe losure property enfores that there is a vertex in the graph for eah blok in the matrix.Being an indued subgraph of an X grid guarantees that there is an edge for eah overlap. Thegraphs in this lass are exatly the intersetion graphs of the m � n bloks in a matrix, thus�nding a maximum independent set of a graph in this lass is equivalent to solving the MNDBproblem of the orresponding dense matrix bloks. This laim is formalized by the followinglemma.Lemma 2.1 An instane of the MNDB problem for �nding K m � n nonoverlapping densebloks in a matrix A is polynomially equivalent to an instane of MIS for a graph in X�mn.Proof: As we disussed earlier, the MNDB problem an be redued to the problem of �nd-ing an independent set on its intersetion graph. Here we show the one-to-one orrespondenebetween intersetion graphs, and graphs in X�mn. Remember that eah dense blok bij orre-sponds to the vertex vij in G(A;m; n). By de�nition of the lass X�mn, G(A;m; n) 2 X�mn,thus any instane of an MNDB problem an be redued to an independent set problem in agraph in X�mn.Given a graph G in X�mn, de�ne A = (aij), so that aij is a nonzero i� k � i < k +m andl � j < l+ n for some vertex vkl in G. Observe that any dense blok in A must be representedby a vertex in G due to the losure property. Also, for any two adjaent verties in G, orre-sponding bloks interset in A, and no other bloks overlap, due to the de�nition of edges inXmn. Thus, a maximum-ardinality subset of nonoverlapping bloks in matrix A orrespondsto a maximum independent set in G 2 X�mn.In this paper we will use the graph lass X�22 to prove the NP-ompleteness of the MNDBproblem for 2� 2 bloks. Our proof an be generalized to arbitrary sized bloks, showing theNP-ompleteness of the MNDB problem for m � n bloks, and hene the NP-ompleteness ofthe maximum independent set problem for graphs in lass X�mn.The following lemma shows that removing a subset of the verties along with their neigh-bors preserves the harateristis of the graph, providing the basis for greedy approximationalgorithms as will be presented in Setion 4. 4
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2 Figure 1: Planar Orthogonal DrawingLemma 2.2 Let G = (V;E) be a graph in X�mn, S � V a subset of verties, and N(S) =fu j (u; v) 2 E; v 2 S; u =2 Sg be the neighborhood of S in G. Then the graph G0 indued byV n (S [N(S)) is still in X�mn.Proof: Let V 0 = V n (S [ N(S)). The lemma would not hold only if for some i; j with1 � i � M � m and 1 � j � N � n we have that for all k; l suh that i � k < i +m andj � l < j + n there exist s; t with s � k < s +m and t � l < t + n and vst 2 V 0, yet vij =2 V 0.First note that vij =2 S. This is sine if k = i and l = j then the orresponding vst must beadjaent to vij sine jk�sj < m and jl� tj < n. Sine vst =2 (S[N(S)) in partiular vst =2 N(S),and so vij 2 N(S). Hene there is a vpq 2 S suh that it is adjaent to vij , i.e. jp � ij < mand jq � jj < n. Then onsider k = (p+i)+jp�ij2 and l = (q+j)+jq�jj2 . Clearly, i � k < i + m,j � l < j + n and p � k < p+m, q � l < q + n. Consider the vst orresponding to this hoiefor k and l. We have s � k < s +m and t � l < t + n. Hene jp� sj < m and jq � tj < n, andso vst 2 N(S), whih is a ontradition sine we must have vst 2 V 0.2.3 Planar Graphs and Orthogonal DrawingsA graph G is planar if and only if there exists an embedding of G on the sphere suh that notwo edges have a point in ommon besides the verties. G is ubi planar if every vertex hasdegree 3.An orthogonal drawing of a graph G is an embedding of G onto a 2-dimensional retangulargrid suh that every vertex is mapped to a grid point and every edge is mapped to a ontinuouspath of grid line segments onneting the end points of the edge. When G is planar, the edgepaths do not ross. An example of orthogonal embedding of a planar graph is illustrated inFigure 1. As seen in this �gure, we refer to a grid point where an edge path hanges diretion asa bend. No two edges share a grid segment or a bend, and no edge path an go through a vertexunless this vertex is an end point of the edge orresponding to the path and is an end point ofthe path itself. A mark in an orthogonal drawing of a graph is a grid point that an edge passesthrough,but not a vertex in the original graph. The following result has been reported by deFraysseix et al. [3℄, Kant [6℄, and Papakostas and Tollis [7℄.Theorem 2.3 Every planar graph G with vertex degree at most 4 an be drawn orthogonallywith at most bn2  + 1 bends on an bn2  � bn2  grid in linear time.In partiular, this shows that every ubi planar graph G = (V;E) an be embedded orthog-onally in an O(jV j)� O(jV j) grid in polynomial time. The NP-ompleteness proof in the next5



setion uses a redution from the maximum independent set (MIS) problem on ubi planargraphs, and adopts orthogonal drawings.3 ComplexityThis setion proves that the MNDB problem is NP-omplete for 2�2 bloks. We use a redutionfrom the independent set problem on ubi planar graphs, whih we know is NP-omplete [4℄.Throughout this setion, we let X� denote X�22. The next lemma explains how we an retainindependent set harateristis of the problems after transformations.Lemma 3.1 Let G = (V;E) be a graph, and u; v be two adjaent verties in G, so that allneighbors of u besides v are also neighbors of v. Let G0 = (V 0; E 0) be the graph G after vertex vis removed. The size of the maximum independent set in G is equal to the size of the maximumindependent set in G0.Proof: If vertex v is in a maximum independent set I , then none of its neighbors are in I .Thus I 0 = I [ fvg n fug is an independent set in G and in G0 of the same size as I .Corollary 3.2 Let G 2 X� ontain the graph H in Figure 5(a) as an indued subgraph so thatall verties exept for possibly v1; v2 and v3 have all of their neighbors in H. Then any instane(G, K) of MIS is equivalent to the instane (G0, K) of MIS for the graph G0 = G n fw1; w2g.Proof: By Lemma 3.1, we an remove w1 from the graph sine all neighbors of x1 are neigh-bors of w1 as well. The redued graph is illustrated in Figure 5(b). Again using Lemma 3.1, wean remove w2 sine it overs all neighbors of x2. Note that we an apply the same transforma-tion to add verties w1 and w2 to the graph in Figure 5().The following lemma desribes how edges of a graph an be replaed by paths, while pre-serving independent set harateristis.Lemma 3.3 Let G = (V;E) be a graph and e = (vi; vj) 2 E be an edge. Let Ge;k be the graphG with the edge e substituted by a simple path vi; w1; w2; : : : ; w2k; vj where k 2 Z+ and wi arenew verties not in the original graph. Then there exists an independent set of size K in G ifand only if there exists an independent set of size K + k in Ge;k.Proof: We present the proof for k = 1, and the result follows by indution.SuÆieny: Let I be an independent set in G, then either vi 62 I or vj 62 I . Without lossgenerality, assume vi 62 I , then I 0 = I [ fw1g is an independent set in Ge;k .Neessity: Let I 0 be an independent set in Ge;k. If w1 2 I 0, then vi 62 I 0, thus I = I 0 n fw1gis an independent set in G. Symmetrially, if w2 2 I 0, then vj 62 I 0, thus I = I 0 n fw2g is anindependent set in G. If w1; w2 62 I 0, then I = I 0 n fv2g is an independent set in G.Theorem 3.4 Problem MNDB is NP-omplete for 2� 2 bloks.Proof: As disussed in the previous setion, the problem of �nding maximum number ofnonoverlapping dense bloks in a sparse matrix an be redued to the problem of �nding amaximum independent set in the intersetion graph of the matrix, and thus is in NP. For the6



Figure 2: Enlargement operation for K = 1
vij vij+1

vi−1j vi−1j

vij+1Figure 3: Bend transformationNP-ompleteness proof we use redution from the independent set problem on ubi planargraphs, whih is NP-omplete [4℄. We �rst use Theorem 2.3 to embed a ubi planar graphonto a grid. Then we transform the embedded graph so that it is in X�. Our transformationspreserve independent set harateristis so that an independent set in the transformed graphan be translated to an independent set in the original graph. Finally, we use Lemma 2.1 torelate the independent set problem on a graph in X�, to the MNDB problem, and onlude theMNDB problem is NP-omplete.Our transformations are loal, so we �rst enlarge the grid to make room for these trans-formations. The enlargement operation inserts K new grid points between two grid points inthe original. An example is illustrated in Figure 3 for K = 1. After the enlargement, eahedge is now replaed by a path of K verties (whih we distinguish from the original verties byalling them marks). Two adjaent verties in the original graph are now at a distane K + 1,whih generates a K �K area around eah vertex for loal transformations. In this proof, it issuÆient to use K = 100.We an break down our transformations into 2 steps. The �rst step guarantees that thetransformed graph is in X�. For this purpose, we need to have an edge between all pairs ofverties for whih the orresponding bloks overlap so that the graph is in X�, and we need toinsert verties into the graph if neessary so that the losure property is satis�ed. The seondstep makes sure that eah edge in the original graph is replaed by an even-length path afterthe orthogonal embedding and transformations. Then we have suessfully transformed theindependent set problem on the ubi planar graph to an independent set problem on a graphin X�, and we an onlude the NP-ompleteness of the MNDB problem using the result ofLemma 2.1.We need to onsider two ases for the �rst step. One is a bend neighborhood as illustratedin Figure 3, and the other is a T- juntion. As illustrated in Figure 4 a T-juntion is just aneighborhood of a vertex in the original graph. Notie that the only remaining ase is a path of7



Figure 4: T-juntion transformation
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Figure 6: odd-length to even-length transformation to preserve independent set harateristis.This redues the independent set problem for ubi planar graphs to an independent setproblem in a graph in lass X�. By the result of Lemma 2.1, we know the independent setproblem on a graph in X� is equivalent to a MNDB problem in a matrix. Thus we redued theindependent set problem for ubi planar graphs to the MNDB problem, whih onludes ourproof.4 Approximation AlgorithmsIn this setion, we present a 2=3-approximation algorithm for the MNDB problem for 2 � 2bloks. Now that we know the problem is NP-omplete, we have to resort to heuristis fora fast and e�etive solution. Remember that our motivation for investigating this problem isspeeding up sparse matrix-vetor multipliation. Our methods will be used in a preproessingphase, thus they must be fast, for their ost to be amortized by the speedup in subsequentsparse matrix-vetor multipliations.Berman et al. [2℄, propose an approximation algorithm for square bloks, whih uses theLipton-Tarjan planar separator algorithm to get a (1��)-approximation, where � = O(1=pÆlogM)in O(n1+Æ) time, for any Æ > 0, where M is the size of an optimal solution. Baker [1℄ gives an(k � 1)=k-approximation, whih uses O(8kn) time and O(4kn) spae.Below we propose a greedy approah for the 2 � 2 ase, whih in the 1=2-approximationase is appliable to general m� n retangular bloks. Unlike the two algorithms ited, due toits greedy nature it is simple and very easy to implement. It is pass-eÆient, and takes timeand spae linear in the number of bloks of the matrix, with very small onstant fators in thebounds.First note that an easy 1=2-approximation to the MNDB problem with 2� 2, whih runs inlinear time in the number of bloks, is ahieved by �nding the leftmost blok in the topmost row,adding it to the urrent independent set, and then repeating the same operation after removingthis vertex and all its neighbors. Note that at most two of the verties an be independent amongthose removed from the graph, thus we have a 1=2-approximation algorithm. In this setion weshow how to improve this approximation result by looking at an extended neighborhood of theleftmost vertex in the uppermost row. Our algorithm is based on hoosing a set of verties inthe neighborhood of the leftmost vertex in the uppermost row, so that the size of this set is noless than 2=3 of a maximum independent set in the indued subgraph of those verties removed9
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?Figure 8: Vertex neighborhood onsidered for eah all to BinTreeDeision. The positions viare used in the deision tree, while the positions ui are only used in the analysis.from the graph. Clearly this generates a �nal solution that is 2=3 of the optimal, sine all greedydeisions are at least 2=3 of the loal optimal. Note that the resulting graph after removinga vertex along with all its neighbors still has the harateristis of the original as proven inLemma 2.2Our deision proess BinTreeDeision is depited as a binary deision tree in Figure 7.In this tree, internal nodes indiate onditions, and the leaves list the verties added to theindependent set. We present the pseudoode of the algorithm below.
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Algorithm MNDB-APXI  ;while V 6= ;v  leftmost vertex on the uppermost rowS  BinTreeDeision(v)I  I [ Sremove S and its neighborhood from Gendwhilereturn ILemma 4.1 Algorithm MNDB-APX runs in linear time in the number of bloks in the matrix.Proof: Eah iteration of the algorithm requires a traversal of the binary deision tree fromthe root to a leaf, whih takes at most 8 steps, thus O(1) time. Also at least one vertex isremoved from the graph at eah iteration. Thus the time for the deision proess is linear in thenumber of verties in the graph. The only other operation that a�ets the ost is �nding theleftmost vertex in the uppermost row. In a preproessing step one an go through the matrixin a left to right fashion and store pointers to the bloks so that vij appears before vkl i� i < kor i = k and j < l. After this it takes onstant time to �nd the urrent leftmost vertex on theuppermost row.Lemma 4.2 The size of the maximal independent set returned by Algorithm MNDB-APX isno smaller than 2=3 of the size of maximum independent set on the intersetion graph.Proof: The proof is based on ase by ase analysis. We show that BinTreeDeision(v)of Figure 7 always returns an independent set S suh that N(S) ontains no independent setlarger than 1:5 jSj, where N(S) denotes the neighborhood of S, i.e., the set of verties in S oradjaent to a vertex in S. Below we examine the binary searh tree ase by ase:
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v5 62 V S = fvg, and v and its neighbors form a lique with MIS size 1.v5 2 Vv1 62 V By the losure property v2 62 V , and we have the following:v6 62 V S = fvg, and v and its neighbors form a lique with MIS size 1.v6 2 Vv4 2 V S = fv; v4g, and N (S) has MIS size at most 3.v4 62 V By the losure property u1 62 V . In this ase, if one of v9 or v8 is not inV , then S = fv5; v6g, sine their neighborhood has MIS size at most 3.Otherwise, v8; v9 2 V :v7 62 V This implies u2 62 V and:v10 62 V S = fv5; v6g and N (S) has MIS size at most 3.v10 2 V S = fv; v8; v9; v10g, and N (S) has MIS size at most 6.v7 2 Vv3 2 V S = fv; v3g, and N (S) has MIS size at most 3.v3 62 V S = fv; v7g, and N (S) has MIS size at most 3.v1 2 Vv2 2 V S = fv; v2g, and N (S) has MIS size at most 3.v2 62 V By the losure property v3 =2 V , andv7 62 V S = fv1g, v1 and its neighbors form a lique, and the MIS is of size 1.v7 2 Vv4 2 V S = fv; v4g, and N (S) has MIS size at most 3.v4 62 V By the losure property u1 62 V , and if one of v8 or v9 is not in V ,then S = fv1; v5g, and N (S) has a MIS size at most 3. Otherwise ifv8; v9 2 V , then S = fv; v7; v8; v9g, and N (S) has MIS size at most 6.Theorem 4.3 Algorithm MNDB-APX is a linear time, 2=3-approximation algorithm.Proof: Follows diretly from Lemma 4.1 and Lemma 4.2.5 Extensions and Further ResearhWe have so far limited our disussions to �nding 2� 2 bloks in a matrix due to spae onsider-ations. However, our results an be generalized to larger bloks and alternative patterns, whihan replae dense bloks to speedup sparse matrix operations.Our NP-ompleteness proof for 2� 2 bloks in Setion 3 an be easily extended to arbitrarysized m� n bloks when m;n � 2.Theorem 5.1 Problem MNDB is NP-omplete for m;n � 2.The essene of the proof remains the same. We �rst enlarge the graph (by a fator linear in mand n), then transform the graph so that it is in X�mn, and then �nally make sure eah edgeis replaed by an even length path. 12



0B� xx x xx 1CA 0B� x xxx x 1CA 0B� x xxx x 1CA(a) (b) ()0B� x xxx x 1CA 0B� xx x xx 1CA 0B� xx x xx 1CA(d) (e) (f)Figure 9: (a) the ross blok (b)-(f) the diagonal versions of the ross blokDetails of our proof an be found in http://www.s.mu.edu/�virgi/newm/paper.ps.Sine our proofs rely solely on the fat that the matrix patterns we onsider are boundedby an m � n retangle, it does not matter whether the bloks are dense, or there are missingentries in the interior. We have a orollary as follows:Corollary 5.2 Let � be an oriented shape, the outer boundary of whih is the boundary of anm� n retangular blok. Then the MNS problem for this � is NP-ompleteAnother observation is that we need not restrit ourselves to viewing the vertial and hori-zontal gridlines of the grid as orresponding to the olumns and rows of the matrix. We an viewone or both of the gridlines to be (parallel) diagonals in the matrix. Moreover, rotating a shapeby a right angle (i.e. swapping the gridline diretions) does not hange the NP-ompletenessresults. Thus any omposition of perpendiular rotation and hanging gridline diretions asdesribed above onverts a shape with a known NP-omplete MNS problem to a new one withthe same omplexity. This tehnique is e�etive for a large variety of shapes. We were ableto derive NP-ompleteness results for many other simple oriented substrutures suh as the soalled ross blok onsisting of an entry (i; j), and its vertial and horizontal adjaent entries(i � 1; j), (i + 1; j), (i; j � 1), (i; j + 1) (Fig. 9a), all of its rotations, ross bloks with vertexsubdivided legs, and many shapes with entral symmetry.We have presented an approah to improving the ahe performane of sparse matrix op-erations by searhing for a maximum number of nonoverlapping oriented matrix substrutureswhih are to be inluded in a dense matrix omponent, leaving all other entries in the sparseomponent, so that A = As+Ad. Sine many substruture patterns an be onsidered, a naturalextension of this idea is to split the matrix into several dense omponents, eah for a di�erentshape. An alternative approah would be to pak all nonzero entries in a minimum number ofdisjoint substrutures by allowing some of the zero entries to be used as nonzeros. This problemis likely to be hard, yet even a good approximation may prove to be useful as one would notneed to split the matrix into a sum. 13
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